A team of researchers, led by University of Kentucky ophthalmologist Dr. Jayakrishna Ambati, has discovered a molecular mechanism implicated in geographic atrophy, the major cause of untreatable blindness in the industrialized world.
Ambati’s team discovered that an accumulation of a toxic type of RNA, called Alu RNA, causes retinal cells to die in patients with geographic atrophy. In a healthy eye, a “Dicer” enzyme degrades the Alu RNA particles.
“We discovered that in patients with geographic atrophy, there is a dramatic reduction of the Dicer enzyme in the retina,” said Ambati. “When the levels of Dicer decline, the control system is short-circuited and too much Alu RNA accumulates. This leads to death of the retina.”
Ambati’s team developed two potential therapies aimed at preventing geographic atrophy and demonstrated the efficacy of both approaches using laboratory models. The first involves increasing Dicer levels in the retina by “over-expressing” the enzyme. The second involves blocking Alu RNA using an “anti-sense” drug that binds and degrades this toxic substance. UK has filed patent applications for both technologies, and Ambati’s group is preparing to start clinical trials by the end of this year.
Response from the scientific community has been enthusiastic.
[…] Potential Treatment for Geographic Atrophy « LVATUG blog […]